skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tangirala, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State estimation and control are often addressed separately, leading to unsafe execution due to sensing noise, execution errors, and discrepancies between the planning model and reality. Simultaneous control and trajectory estimation using probabilistic graphical models has been proposed as a unified solution to these challenges. Previous work, however, relies heavily on appropriate Gaussian priors and is limited to holonomic robots with linear time-varying models. The current research extends graphical optimization methods to vehicles with arbitrary dynamical models via Simultaneous Trajectory Estimation and Local Adaptation (STELA). The overall approach initializes feasible trajectories using a kinodynamic, sampling-based motion planner. Then, it simultaneously: (i) estimates the past trajectory based on noisy observations, and (ii) adapts the controls to be executed to minimize deviations from the planned, feasible trajectory, while avoiding collisions. The proposed factor graph representation of trajectories in STELA can be applied for any dynamical system given access to first or second-order state update equations, and introduces the duration of execution between two states in the trajectory discretization as an optimization variable. These features provide both generalization and flexibility in trajectory following. In addition to targeting computational efficiency, the proposed strategy performs incremental updates of the factor graph using the iSAM algorithm and introduces a time-window mechanism. This mechanism allows the factor graph to be dynamically updated to operate over a limited history and forward horizon of the planned trajectory. This enables online updates of controls at a minimum of 10Hz. Experiments demonstrate that STELA achieves at least comparable performance to previous frameworks on idealized vehicles with linear dynamics. STELA also directly applies to and successfully solves trajectory following problems for more complex dynamical models. Beyond generalization, simulations assess STELA's robustness under varying levels of sensing and execution noise, while ablation studies highlight the importance of different components of STELA. Real-world experiments validate STELA's practical applicability on a low-cost MuSHR robot, which exhibits high noise and non-trivial dynamics. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  2. This paper reviews the large spectrum of methods for generating robot motion proposed over the 50 years of robotics research culminating in recent developments. It crosses the boundaries of methodologies, typically not surveyed together, from those that operate over explicit models to those that learn implicit ones. The paper discusses the current state-of-the-art as well as properties of varying methodologies, highlighting opportunities for integration. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. This paper reviews the large spectrum of methods for generating robot motion proposed over the 50 years of robotics research culminating in recent developments. It crosses the boundaries of methodologies, typically not surveyed together, from those that operate over explicit models to those that learn implicit ones. The paper discusses the current state-of-the-art as well as properties of varying methodologies, highlighting opportunities for integration. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  4. This paper aims to improve the computational efficiency of motion planning for mobile robots with non-trivial dynamics through the use of learned controllers. Offline, a system-specific controller is first trained in an empty environment. Then, for the target environment, the approach constructs a data structure, a “Roadmap with Gaps,” to approximately learn how to solve planning queries using the learned controller. The roadmap nodes correspond to local regions. Edges correspond to applications of the learned controller that approximately connect these regions. Gaps arise as the controller does not perfectly connect pairs of individual states along edges. Online, given a query, a tree sampling-based motion planner uses the roadmap so that the tree’s expansion is informed towards the goal region. The tree expansion selects local subgoals given a wavefront on the roadmap that guides towards the goal. When the controller cannot reach a subgoal region, the planner resorts to random exploration to maintain probabilistic completeness and asymptotic optimality. The accompanying experimental evaluation shows that the approach significantly improves the computational efficiency of motion planning on various benchmarks, including physics-based vehicular models on uneven and varying friction terrains as well as a quadrotor under air pressure effects. 
    more » « less
  5. Estimating the region of attraction (RoA) for a robot controller is essential for safe application and controller composition. Many existing methods require a closed-form expression that limit applicability to data-driven controllers. Methods that operate only over trajectory rollouts tend to be data-hungry. In prior work, we have demonstrated that topological tools based on Morse Graphs (directed acyclic graphs that combinatorially represent the underlying nonlinear dynamics) offer data-efficient RoA estimation without needing an analytical model. They struggle, however, with high-dimensional systems as they operate over a state-space discretization. This paper presents Morse Graph-aided discovery of Regions of Attraction in a learned Latent Space (MORALS) . The approach combines auto-encoding neural networks with Morse Graphs. MORALS shows promising predictive capabilities in estimating attractors and their RoAs for data-driven controllers operating over high-dimensional systems, including a 67-dim humanoid robot and a 96-dim 3-fingered manipulator. It first projects the dynamics of the controlled system into a learned latent space. Then, it constructs a reduced form of Morse Graphs representing the bistability of the underlying dynamics, i.e., detecting when the controller results in a desired versus an undesired behavior. The evaluation on high-dimensional robotic datasets indicates data efficiency in RoA estimation. 
    more » « less